Government General Degree College, Chapra

Internal Assessment- 1st Semester, 2022-23 Sub.- Physics Paper: MATHEMATICAL PHYSICS-I

Total Marks: 15

Time: 40 minutes

Answer any three questions only:

1.	If $\vec{F} = x^2 \hat{\imath} + y^2 \hat{\jmath}$, then find the line integral $\int_c^{\cdot} \vec{F} \cdot d\vec{r}$ in the <i>x</i> - <i>y</i> plane along a line $y = x^2$ from <i>P</i> (0,0) to <i>Q</i> (1,1).	5
2.	(a) Find the eigenvalues of the matrix $\begin{pmatrix} 3 & i \\ -i & 3 \end{pmatrix}$. (b) Prove that the modulus of each characteristic root of a unitary matrix is unity.	2 3
3.	(a) Solve the differential equation $(x + 1)\frac{dy}{dx} - y = e^x (x + 1)^2$. (b) Find the Taylor series expansion of lnx about $x = 2$.	3 2
4.	Solve the equation – y'' + 6y' + 8y = 0, subject to the condition $y = 1$, $y' = 0$ at $x = 0$, where, $y' = \frac{dy}{dx}$ and $y'' = \frac{d^2y}{dx^2}$.	5
5.	(a) Find a unit vector normal to $\vec{A} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$ and $\vec{B} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. (b) Using Stoke's law, prove that $\vec{\nabla} \times \vec{\nabla} \phi = 0$.	2 3
6.	(a) The position vectors of three points A, B and C are $\vec{r_1} = \hat{\iota} + 2\hat{j} + \hat{k}$, $\vec{r_2} = 3\hat{\iota} + 2\hat{j} - 3\hat{k}$. Find the area of the triangle.	3ƙ 3

(b) $\vec{\omega}$ is a constant vector and \vec{r} is the position vector of a point. If $\vec{v} = \vec{\omega} \times \vec{r}$, then prove that $\vec{\nabla} \cdot \vec{v} = 0$.